Learn Better | Life Better

what is Celestial Lamp | Prime vector | A cell with physics modal in Hindi and English explain

आकाशीय  जालक :
किसी भी  जालक में उनके बिंदुओं को व्यक्त करने के लिए एक निर्देशतंत्र की आवश्यकता होती है
यदि यह बिंदु किसी एक निश्चित दिशा में जिनकी पुनरावर्ती अनंत बार होती है तो इस प्रकार का रेखिय व्यू रेखिक जालक कहलाता हैं|
image 1
जब रेखिक जालक दिशा के अतिरिक्त किसी अन्य दूसरी दिशा में इन कणों की पुनरावर्ती आनंद बार हो तो यह द्विविमीय (2D)  जालक कहलाते हैं|
image 2

यदि द्विविमीय जालक के अतिरिक्त किसी अन्य दिशा में जालक बिंदुओं की पुनरावर्ती अनंत बार हो तो त्रिविमीय (3D) जालक कहलाते हैं|
image 3
इन्ही त्रिविमीय जालक को आकाशीय जालक भी कहा जाता है जिनमें  x,y तथा z अक्ष को क्रिस्टलीय संदिश
a,b,तथा c द्वारा निरूपित किया जाता है| तथा इन्ही ही निम्न स्थानांतरण सदिश द्वारा व्यक्त किया जाता है|



(जहां n1,n2,n3 स्वेच्छित नियतांक है या यह पूर्णांक है|)


image 4 : lattice+Base = Crystal
जालक तथा आधार मिलकर एक क्रिस्टल सरचना का निर्माण करते हैं|

अभाज्य सदिश:
किसी भी क्रिस्टल के स्थानांतरण सदिश को निम्न प्रकार से व्यक्त किया जाता है|
यदि क्रिस्टल में r , r' सदिश को जहां से क्रिस्टल संरचना सम्मान दिखाई देती हो तो
                      
समीकरण (1) से


वह इन अभाज्य सदिशो  मिलकर बनने वाला क्रिस्टल अभाज्य क्रिस्टल कहलाता है|

एक कोशिका
 किसी भी क्रिस्टल में कोशिका की न्यूनतम आयतन वाला भाग जहां से क्रिस्टल सरचना स्पष्ट रुप से दिखाई देती है ,एक क्रिस्टल कोशिका कहलाती है ,जिनकी अक्षय को a,b and cसे व्यक्त किया जाता है|
image 5

एक कोशिका के आयतन को
द्वारा व्यक्त किया जाता है | यदि क्रिस्टल में उपस्थित घनत्व हो तो
MA : अनुवाद एक 
m : अनुपात का द्रव्यमान
NA : आवोगाद्रो संख्या
v: क्रिस्टल का आयतन

IN ENGLISH

Celestial Lamp:
In order to express their points in any lattice requires a directive
If this point is in a certain direction whose recurring endless times, then this type of linear view is called a linear lattice. (see image 1)


When there is recursive bliss of these particles in any other direction other than the linear lattice direction, then it is called two-dimensional (2D) lattice.(see image 2)
If there is an infinite number of lattice points in any direction other than the two-dimensional lattice, then the three-dimensional (3D) lattice is called.(see image 3)


These three-dimensional lattice is also called the celestial lattice, in which x, y and z axis are crystalline satchel A, b, and c is denoted. And this is what is expressed by the following transfer vector.(see image 4)
A cell  In any crystal, the smallest volume portion of the cell from which crystal split is clearly visible, is called a crystal cell, whose renewable is expressed by a, b and c.(see image 5)

No comments:

Post a Comment

सवाल पूछने के बाद "Notify me" आप्शन को ✔(Right Mark) करे, ताकि आपके पूछे गये सवाल का जवाब मिलने पर आपको सुचना मिल जाये:-